Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature

Luis Herrera-Huisa, Nicole Arias-Meza, Michael Cabanillas-Carbonell

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The world is currently experiencing a major pandemic with the SARS-CoV-2 virus in which many patients who suffer and have suffered from this disease are more likely to suffer from hypertension. For this purpose, we have carried out a review of the scientific literature, from which we have collected 105 articles obtained from the following databases: ProQuest, Dialnet, ScienceDirect, Scopus, IEEE Xplore. Subsequently, based on the inclusion and exclusion criteria, 68 articles were systematized, detailing that Machine Learning helps us in the detection and prediction of hypertension in patients with coronavirus, Likewise, the predictive models that allow better detection of hypertension in patients with Covid 19 are 'Neural Networks', 'Cox Risk Model', 'Random Forest' and 'XGBoost', detailing the countries and technologies used.

Original languageEnglish
Title of host publication19th IEEE International Symposium on Parallel and Distributed Processing with Applications, 11th IEEE International Conference on Big Data and Cloud Computing, 14th IEEE International Conference on Social Computing and Networking and 11th IEEE International Conference on Sustainable Computing and Communications, ISPA/BDCloud/SocialCom/SustainCom 2021
Pages769-775
Number of pages7
ISBN (Electronic)9781665435741
DOIs
StatePublished - 2021
Externally publishedYes
Event19th IEEE International Symposium on Parallel and Distributed Processing with Applications, 11th IEEE International Conference on Big Data and Cloud Computing, 14th IEEE International Conference on Social Computing and Networking and 11th IEEE International Conference on Sustainable Computing and Communications, ISPA/BDCloud/SocialCom/SustainCom 2021 - New York, United States
Duration: 30 Sep 20213 Oct 2021

Publication series

Name19th IEEE International Symposium on Parallel and Distributed Processing with Applications, 11th IEEE International Conference on Big Data and Cloud Computing, 14th IEEE International Conference on Social Computing and Networking and 11th IEEE International Conference on Sustainable Computing and Communications, ISPA/BDCloud/SocialCom/SustainCom 2021

Conference

Conference19th IEEE International Symposium on Parallel and Distributed Processing with Applications, 11th IEEE International Conference on Big Data and Cloud Computing, 14th IEEE International Conference on Social Computing and Networking and 11th IEEE International Conference on Sustainable Computing and Communications, ISPA/BDCloud/SocialCom/SustainCom 2021
Country/TerritoryUnited States
CityNew York
Period30/09/213/10/21

Keywords

  • Hypertension
  • Machine learning
  • Systematic review

Fingerprint

Dive into the research topics of 'Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature'. Together they form a unique fingerprint.

Cite this