TY - GEN
T1 - Mamey Apple Peel for Cr3+ Removal from Contaminated Waters
AU - Cotrina, Nathali
AU - Vejarano, Ricardo
N1 - Publisher Copyright:
© 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - The aim of this study was to evaluate the capacity of an adsorbent based on mamey apple (Mammea americana L.) peel for Cr3+ removal. Aqueous mediums based on distilled water and different initial concentrations of Cr3+, with a dose of 10 g of adsorbent per liter, were used. The residual concentrations of Cr3+ were determined by atomic absorption spectrophotometry, obtaining optimum values of pH of 2.9, the adsorbent particle size of 300 µm, and stirring rate of 300 rpm, for Cr3+ removal. Kinetic studies indicate a chemical adsorption process, with the best adjustment to pseudo-second-order models (R2 ≥ 0.9973), a contact time of 120 min to reach the adsorbent-Cr3+ equilibrium, and a good fit to the Freundlich model (R2 = 0.9291), with an adsorption intensity n of 1.5876. So, our results suggest that Cr3+ ions can be efficiently removed by using mamey apple peel-adsorbent.
AB - The aim of this study was to evaluate the capacity of an adsorbent based on mamey apple (Mammea americana L.) peel for Cr3+ removal. Aqueous mediums based on distilled water and different initial concentrations of Cr3+, with a dose of 10 g of adsorbent per liter, were used. The residual concentrations of Cr3+ were determined by atomic absorption spectrophotometry, obtaining optimum values of pH of 2.9, the adsorbent particle size of 300 µm, and stirring rate of 300 rpm, for Cr3+ removal. Kinetic studies indicate a chemical adsorption process, with the best adjustment to pseudo-second-order models (R2 ≥ 0.9973), a contact time of 120 min to reach the adsorbent-Cr3+ equilibrium, and a good fit to the Freundlich model (R2 = 0.9291), with an adsorption intensity n of 1.5876. So, our results suggest that Cr3+ ions can be efficiently removed by using mamey apple peel-adsorbent.
KW - Adsorption
KW - Chromium-contaminated waters
KW - Mamey apple peel
UR - http://www.scopus.com/inward/record.url?scp=85098134188&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-57566-3_18
DO - 10.1007/978-3-030-57566-3_18
M3 - Conference contribution
AN - SCOPUS:85098134188
SN - 9783030575656
T3 - Smart Innovation, Systems and Technologies
SP - 177
EP - 189
BT - Proceedings of the 5th Brazilian Technology Symposium - Emerging Trends, Issues, and Challenges in the Brazilian Technology
A2 - Iano, Yuzo
A2 - Arthur, Rangel
A2 - Saotome, Osamu
A2 - Kemper, Guillermo
A2 - Borges Monteiro, Ana Carolina
T2 - 5th Brazilian Technology Symposium, BTSym 2019
Y2 - 22 October 2019 through 24 October 2019
ER -